

Setting up the common framework for ADVANCEFUEL project D1.3 Framework for WP2-6

Ayla Uslu, Joost van Stralen Energy Transition Studies Energy research Center of the Netherlands (ECN) Amsterdam, the Netherlands uslu@ecn.nl | www.ecn.nl

Stavros Papadokonstantakis, Filip Johnsson Department of Space, Earth and Environment, Energy Technology Chalmers University ECN-E--18-016

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N.º 764799.

Deliverable	Information
Grant Agreement Number	764799
Project Acronym	ADVANCEFUEL
Instrument	CSA
Start Date	1 September 2017
Duration	36 months
Website	www.ADVANCEFUEL.eu
Deliverable Number	D1.3
Deliverable Title	Setting up the common framework for
	ADVANCEF project - Framework for WP
	2-6
Expected Submission	M6
Actual Submission	M6
Authors	Ayla Uslu, Joost van Stralen, Stavros
	Papadokonstantakis, Filip Johnsson
Reviewers	All project partners
Dissemination Level	PU
Public (PU), Restricted (PP),	
Confidential (CO)	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N.º764799.

Contents

Abbreviations	4
Introduction	5
ADVANCEFUEL project focus and the project boundaries	6
Common analytical framework of the project	9
1. Main stages of the framework	9
2. Harmonisation of the project work and the main interlinkages	10
Main definitions	17
1. General definitions	17
2. Terminologies and definitions in the biofuel production value chain	18
Feedstock supply	18
Biomass-to-fuel Conversion technologies	21
Sustainability performance	22
End use in engine/ vehicle technologies	23
Conclusions	28
References	29
Annexes	
Input-Output schemes per WP	

Abbreviations

BFB	:	bubbling fluidized bed
BMEP	:	break mean effective pressure
BTE	:	brake thermal efficiency
BTL	:	biomass-to-liquid
BSFC	:	brake specific fuel consumption
CAPEX	:	capital expediters
CFB	:	circulating fluidized bed
CHP	:	combined heat and power
CNG	:	compressed natural gas
DFB	:	dual fluidized bed
DME	:	dimethyl ether
EFA	:	energy flow analysis
FAME	:	fatty acid methyl ester
FFV	:	flexible fuel vehicle
FT	:	fischer-tropsch
FT-SPD	:	fischer-tropsch hydroprocessed synthetic paraffinic diesel
GHG	:	greenhouse gas
GTL	:	gas-to-liquid
HRD	:	hydroprocessed or hydrotreated renewable diesel
HRJ	:	hydroprocessed or hydrotreated Renewable Jet
HVO	:	hyrotreated vegatble oil
ICE	:	internal combustion engine
IGCC	:	integrated gasification combined cycle
iLUC	:	indirect land use change
KPI	:	key performance indicator
LCA	:	life cycle assessment
LHV	:	lower heating value
LNG	:	liquefied natural gas
MFA	:	material flow analysis
NEDC	:	new European driving cycle
OPEX	:	operational expenditures
R&D	:	research and development
RED	:	renewable energy directive
SI	:	spark ignition
SNG	:	synthetic natural gas
SPD	:	synthesized paraffinic diesel
SRC	:	short rotation coppice
SPK	:	synthesized paraffinic kerosene
SRP	:	short rotation poplar
TRL	:	technology readiness level
WLTP	:	worldwide harmonized light vehicles test procedure
WP	:	work package
TtW	:	tank-to-wheel
WtT	:	well-to-tank
WtW	:	well-to-wheel

Introduction

The overarching goal of the Horizon 2020-funded EU project **ADVANCEFUEL** is to facilitate the market roll-out of advanced liquid biofuels and other liquid renewable fuels (further jointly addressed as "RESFuels") in the transport sector between 2020 and 2030. The project will provide the market stakeholders with new knowledge, tools, standards and recommendations to remove the most prominent barriers and detect development opportunities for their commercialisation.

This document aims to set a common analytical framework that systematically guides the research to be conducted in work packages (WPs) 2 to 6. It aims at creating the coherence between the WPs that focus on different steps of the considered biofuels' value chain and the integrated assessment work package (WP6). More specifically, this document:

- defines the main focus of this project and introduces the system boundaries,
- presents a general framework that structures the analyses steps,
- defines the main interactions and the possible risks, and
- introduces the key terminologies and definitions that are used within the different WPs.

The report consists of four chapters. Chapter two details the project focus and sets the boundaries of this project. Chapter three focuses on the general framework and introduces the main interactions and the possible risks in the execution of the project. Chapter four introduces the main definitions that will be used across the project.

ADVANCEFUEL project focus and the project boundaries

The **ADVANCEFUEL** project aims at increasing the market uptake of liquid advanced biofuels and other liquid renewable fuels, jointly referred to as 'RESFuels'.

- Liquid advanced biofuels are defined as all liquid biofuels produced from lignocellulosic biomass, through thermochemical or biochemical pathways, in which the latter includes a cellulose hydrolysis step. The lignocellulosic biomass includes feedstocks as specified in Annex IX of the EU renewable energy directive proposal (COM (2016) 767 final/2)¹ (hereafter referred to as the REDII proposal).
- Advanced biofuel conversion pathways are at different stages of technological maturity. The main focus is on **the demonstration and (near-) commercial scale technologies**. There is less attention to technologies that are at the research and early prototype stage.
- While advanced gaseous fuels are part of the study they are considered as intermediates rather than the end products.
- Other liquid renewable fuels are essentially all renewable fuels that do not have biomass as feedstock basis. These include liquid fuels produced from hydrogen and CO₂, provided that the hydrogen is generated from renewable resources, i.e. by using renewable power for the electrolysis of water to gain hydrogen for further processes. Also direct 'solar fuels' can be included in this definition

The definition of RESFuels in this project slightly differs from the coverage of the advanced fuels introduced in the REDII proposal. The main differences are summarised below.

- The REDII proposal includes both liquid and gaseous fuels, whereas the focus in this project is limited to liquid fuels. Thus, WP 2 to 5 will focus on the feedstock and conversion technologies that result in renewable liquid fuels to replace fossil-based liquid fuels.
- The REDII proposal also includes renewable electricity and waste-based fuels. These fuels are excluded in this study. Nevertheless, the integrated assessment (WP6) includes the implications of electrification in road transport on liquid advanced biofuels.

Figure 1 illustrates the schematic overview of the RESFuels coverage within the **ADVANCEFUEL** project.

 $^{^1}$ Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of energy from renewable sources (recast)

Renewable resources ADVANCEFUEL will focus on fuels produced from renewable resources, such as residues from agriculture and forestry, sustainable woody and grassy crops, waste and renewable energy, carbon dioxide and hydrogen. Conversion processes ADVANCEFUEL will look at different conversion processes that are already at a high development stage and have been validated in an industrial environment.

Figure 1 ADVANCEFUEL project main focus (feedstock-to-renewable fuels pathways)

The main feedstock focus is lignocellulosic biomass that originates from agriculture, forests and waste. Table 1 introduces the feedstock categories, which are included in this project.

Biogenic wastes	Agriculture	Forestry
Biomass from roadside	Processing crop residues	Processing residues
	 e.g. husk (rice, coconut, coffee, bagasse, grape marcs) and wine lees, nut shells 	 e.g. wood chips, sawdust, trimming, cut- offs, liquor (black and brown), fibre sludge
Organic waste from industry	Harvesting crop residues	l ow-value woods
 e.g. bulk transport packaging, recovered post- consumer wood residues (construction and demolition debris) (excluding wood which goes to non-energy uses), molasses 	 e.g. corn stover, straw (wheat, rice, cassava), empty palm fruit bunches 	 e.g. low-quality stems and stumps which have no current market
Biomass from landscape management	Lignocellulosic fractions of agroforestry systems	Forest residues
 e.g. leaf fall and grass clippings 	 e.g. orchards, shrubs and trees (for productive, diverse, ecologically-sound and healthy land use) 	 e.g. thinning, clearing, logging from conventional harvest operations
	Grassy Energy crops	Industrial round wood and
Biomass fraction of mixed municipal solid waste, excluding separated household waste subject to recycling	 e.g. ryegrass, switchgrass, miscanthus, giant cane and cover crops before and after main crops 	pulpwood
	 Woody energy crops e.g. short rotation coppice (SRC), willow, short rotation poplar (SRP)) 	

Table 1 Categorisation of lignocellulosic biomass feedstock

Common analytical framework of the project

1. Main stages of the framework

The **ADVANCEFUEL** project consists of 9 work packages (WPs) with several interlinkages. Figure 2 illustrates the project structure. A common analytical framework is established in consideration of the 9 WPs. This framework consists of four main steps:

- · Identifying the main barriers
- Defining the scope of the problem and assessing the possible ways forward
- Identifying scenarios
- Examining the effects in all domains (socio-economic and environmental).

Figure 2 ADVANCEFUEL project approach

Identifying the main barriers

Development and deployment of large scale RESFuel projects face serious challenges. The conversion technologies are in different stages of maturity and they face different technical challenges hindering their further development. Their large scale commercialisation depends on overcoming these challenges. WP1, Deliverable 1.1 summarises the technical, economic, social, environmental and regulatory barriers to advanced biofuels. Through consultations these barriers will be prioritised and serve as input to the following WPs.

Defining the scope of the problem and assessing the possible ways forward

Identifying main barriers help to frame the scope of the assessment in different WPs. The assessment covers the complete value chain; feedstock supply. conversion and use. processes end Additionally, sustainability and certification requirements across the value chains are analysed in detail. Assessments. in general lines, include:

- Identifying the innovative approaches the overcome key barriers to through stakeholder involvements (interview, questionnaire, dedicated workshops), literature and internal discussions within the project consortium
- Analysing these innovative approaches
- Defining the expected time frames to implement them (2020, 2030 and/or 2040).

Identifying scenarios and examining the effects

There is a dedicated work package, WP6, that focuses on the integrated assessment of different innovative approaches using inputs from other WPs for different steps of the biofuels' value chains. WP6 integrates the proposed solutions and provides insights in the full-chain fuel costs, taking into account the feedstock costs and potentials, logistics, technology performance and market demand. The assessment is done using various demand and supply scenarios that take into account socioeconomic as well as environmental aspects. The overall objective of this exercise is to define strategies for the future development of RESFuels.

2.Harmonisation of the project work and the main interlinkages

There are many interlinkages and interdependencies among the different WPs. Therefore, a harmonised working structure that is agreed up on by all WP leaders is obligatory for the success of this project. In order to streamline the working processes and increase the coherence, the information flows between work packages are prepared for each WP and presented in Annex 1. These information flows are structured as follows:

• Per WP, information and data needed from other WPs are presented,

• Outputs of the corresponding WP are then established which should serve as input for other WPs.

Table 2 gives an overview of the key outputs from work packages that are needed as input for other work packages. The expected month of delivery is compared with the month when this information is needed by other work packages. It also indicates possible tensions that may occur in the course of the project due to potential interferiences of the concerned subtasks' timelines. The colour coding is used to indicate whether the planning is smooth or whether there may be some tensions. Green means the work is scheduled in time to feed-in to other WPs. Blue colour means the work is scheduled just in time but attention is needed not to cause any delays. Red colour highlights critical phases in the project, where WP-specific timeliness/schedules require harmonisation. Table 2 Overview of outputs of work packages and month of delivery (left three columns) and months when needed as input for other work packages, right eight columns. On the right part a colour coding is used: green means on time, blue means just in time and attention is needed, red colour highlights critical phases in the project.

	Output from WP		Input	t for ot	her WP	s as in	dicated	Clarifications			
WP	Output ID	Month	WP1	WP2	WP3	WP4	WP5	WP6	WP7	WP8	
	Barriers background document	4		6	6	6	6	6			
1	Monitoring framework and the KPI's	4		6	6	6	6	6			
	A common framework with definitions	6		6	6	6	6	6			
	Relevant results for KPI quantification	12,20	18,3 0								
	Identification of innovative crop rotation schemes	18					18				
2	Domestic feedstock availability (cost- supply) up to 2040	12				13		14			
	Import scenarios including cost-supply of biomass/biofuel import potential	9						14			
	Innovative crop rotation schemes (with cost-supply data)	20					20	20			
	Relevant results for KPI quantification	18, 30	18,3 0								The KPI quantification of WP3 is set at the same data of the WP1 deliverable.
	Requirements on biomass quality for the different processes	10		10							
3	Advanced biofuel conversion system characteristics over time (efficiency, CAPEX, OPEX etc.)	13						20			
	Estimation of potential increase in TRL level can be achieved and the probability for this to happen within a 5-10 year period	24						20			The modelling will use this information to update the techno-economic data. There is a risk that the info may be too late
	Financial risk and instruments for	24						24			

	financing demonstration and piloting							
	Options for greening of the fossil fuel infrastructure	18				20		
	Possible timelines for implementation of biomass conversion technologies and associated requirements on R&D, financial support and policies	20, 32				20		This info will be highly relevant for the modelling. The timely deliverable is of high importance.
	Relevant results for KPI quantification	18, 30	18,3 0					The KPI quantification is set at the same data of the WP1 deliverable.
	Feedstock and location specific environmental impacts (database, report)	30				26		The assessment results will be relevant in defining the policy recommendations in WP6. An early first draft from WP4 is essential
4	Relevant sustainability indicators of innovative crop schemes	12				20		
	Environmental and socio-economic performance of advanced fuel production systems	24				26		
	Life cycle GHG performance per supply chain (feedstock + conversion combination)	34				26		Advisable to incorporate the GHG emission results to WP6. This will require an early analysis from WP4.
	Brief description of Best Practice (in a set format)	18, 36				20		
	Relevant results for KPI quantification	18, 30	18,3 0					The KPI quantification of WP3 is set at the same data of the WP1 deliverable.
5	List of relevant gaps in current policy formation	30				26		WP6 will define policy recommendations. Relevant gaps in current policy formation can help defining these recommendations.
	Technical limitations end use: RESFuels possible per engine type, blending limitations					20		An agreement needs to be done between WP5 and WP 6.

	Numerical tools for fuel and fuel blend	33								
	properties	26.22	100							T
6	Relevant results for KPI quantification	26, 30	18,3 0							The GHG emission and employment effects of selected value chains will only be informed in month 30. Month 18 will not include this KPI.
	Development pathways for RESFuels	26								
	Market segmentation, end uses and policy recommendations	26							27	
	Stakeholder workshop for an early recording of stakeholder requests and for mutual discussions about key barriers	6	6							Barrier prioritisation should be based on a dedicated workshop results. However, it was not possible to implement the original planning of holding a workshop at that early stage of the project. Hence, the respective report D 1.1 remains a working document until M12.
7	Workshop on biomass availability	12				12				Unless the workshop is organised early in the month, it may be late to contribute to the final deliverable
	Workshop on RES fuel conversion technology solutions	17		22						
	Workshop on RESFuel sustainability	22						24		
	Workshop on RESFuel market roll out	27						26		
8	The stakeholder mapping and Communication Plan	3	4	4	4	4	4	4	4	
0	additional plan on communication tools and channels	6	6	6	6	6	6	6	6	

Foreseen risks and the actions to overcome them

Table 2 illustrates the main risks in red. The risks and the suggested solutions are summarised below.

1. The annual quantification of KPIs

The key performance indicators (KPIs) are suggested to be quantified annually and at the defined months 18 and 26. Two groups of KPIs are identified. The first group relates to the project monitoring. The KPIs are designed based on the main goals of the different WPs to monitor the progress in each WP. However, the planning in each WP in general is not established in the same months of 18 and 26 for the KPI quantification. Therefore, the quantification of WP related KPIs will be limited in month 18. The second group of KPIs that focuses on monitoring of the European RESFuel market will be updated both in month 18 and month 26.

2. Estimation of potential increase in TRL level

Integrated assessment in WP6 applies the RESolve-Biomass model. This model currently covers the technologies that have high technology readiness levels (TRL). The information from WP3 on possible TRL increases may have consequences to updating the RESolve model and including other technologies. An update will be needed when necessary. However, the original timing of this task in WP3 happens somewhat later. To avoid this inconsistency, a timely agreement between WP3 and 6 will be necessary.

3. Feedstock and location specific environmental impacts.

The assessment report in WP4 is planned at a later stage than the integrated assessment. The integrated assessment and the policy recommendations in WP6 can make use of the main finding from WP4. Draft results of the assessment in WP4 will be made available in an earlier stage to feed in to the recommendations of the integrated assessment.

4. Life cycle GHG performance per supply chain (feedstock + conversion combination)

WP4 sets the greenhouse gas (GHG) emission performance at a later stage than the integrated impact assessment in WP6. It is, however, advisable to incorporate the GHG emission calculations in WP6. This will require implementing the GHG performance in WP4 at an earlier stage. To this purpose, the draft report and appendix (Excel based GHG footprint calculation tool) will be made available in Month 24.

5. List of relevant gaps in current policy formation

Integrated assessment in WP6 will result in policy recommendations. It is advisable to include the conclusions of WP5 related to the gaps in current policy formation (which have originally been scheduled at a later date) to these recommendations. A first draft report focusing on the gaps in current policy formation will be made available in Month 24 for WP6.

6. Dedicated stakeholder workshop for identification and prioritisation of barriers.

The initial stakeholder workshop planning was too optimistic. It was not realisable (in regard to already presentable results) to organise the first workshop in M6. Therefore, this task is postponed to a later stage. In the meantime, presentations at other conferences and online surveys are used to gather feedback on the identified key barriers.

7. Report on review of standards and certification schemes

As part of an exhaustive review of standards for biofuels and related certification schemes, a consultation with various stakeholders is carried out given the changing legislation at EU and national level. As the consultation requires several months of interviews, follow-up discussions, and also a consultation summary, it is proposed to deliver the report in month 14 instead of the planned month 12.

Main definitions

In chapter two, the project focus and system boundaries are described and the terms liquid advanced biofuels, other liquid renewable fuels, lignocellulosic biomass and the considered conversion processes are explicitly defined. Here definitions with respect to feedstock supply potential, infrastructure and specifications, conversion technology parameters and efficiencies, sustainability performance, and end use specifications and infrastructure are provided. The definitions also include the respective nomenclature and data requirements. Where applicable, the definitions are compatible with previous research work in the FP7 S2BIOM² project, covering the whole biomass delivery chain - from primary biomass to end-use of non-food products, and from logistics and pre-treatment to conversion technologies). They also consistent with the definitions in the EU Directives and strategies on biofuels (e.g., from the Directives 2009/28/EC, 2009/30/EC, known as Renewable energy Directive (RED), to the REDII proposal and recent amendments of it as adopted by the European Parliament in January 2018).

1. General definitions

For assessing the overall efficiency of the RESFuel value chains the project adopts the concepts of Well-to-Wheel (WtW) analysis. WtW focuses on the energy use and GHG emissions in the production of fuel and its use in the vehicle or engine. The system boundaries of the WtW analysis are equivalent to those of a cradle-to-grave Life Cycle Assessment (LCA), which is performed as part of the sustainability assessment of the project (WP4). However, the inventories in WtW analysis do <u>not</u> include those related to feedstock supply and conversion technology facilities and vehicles, consumption of other materials and water, and end of life disposal. It should be stressed that care must be taken when comparing WtW performance from various other LCA studies since these studies may apply different approaches. Another challenge is to account for future development of technologies.

The WtW analysis is divided into two sections. The well-to-tank (WtT) accounts for the energy expended and associated emissions to deliver the finished fuel in the fuel tank and is used to compare different conversion technologies, namely with respect to the energy requirement to produce one unit of fuel. The tank-to-wheel (TtW) refers to the final conversion of the fuel in the vehicle.

The WtW total energy $[MJ_{input}/MJ_{out}]$ refers to the total fossil and renewable energy used to produce 1 MJ_{out} at the crankshaft of the engine, on lower heating value (LHV) basis. The calculation of the total WtW energy is based on the WtT energy expended $[MJ_{eq}/MJ_{fuel}]$ (i.e. same units as the cumulative energy demand in LCA) and the TtW energy consumption in the engine, as calculated by Edwards et al., (2014).

² http://www.s2biom.eu/en/about-s2biom.html

The WtW GHG emissions represent the total grams of CO_2 equivalent emitted in the process of producing 1 MJ_{out} from the engine, and are expressed in [gCO₂eq/MJ_{out}]. The interpretation of the results of the WtW analysis may require a transformation of the unit basis to consider specific end uses of the fuel (e.g., in light-duty or heavy-duty vehicles, powertrains, etc.) and be expressed, for instance, in MJ/km and MJ/(t*km) or gCO₂eq/km and gCO₂eq/(t*km), respectively. The end uses of the fuel are further discussed in the definitions in section 4.2.4.

Based on the WtW analysis, an additional indicator for the assessment of the overall value chain of the RESFuel is the biomass impact (BI), expressing the WtW emissions reduction from a "reference" fuel alternative (e.g. natural gas, diesel, kerosene, methanol) per MJ of biomass $[gCO_2eq/MJ_{biomass}]$ (Alamia et al., 2016). Here, the following assumptions are made:

- a mix of renewable and fossil energy is present either in the market, in the fuel blend or in the combustion process also in the medium-long term
- biofuel availability is limited by the amount of sustainably grown biomass

The inventory analysis for the WtW and BI efficiency metrics, although not as comprehensive as for LCA, should comply with the standards of LCA to be performed in WP4. This will harmonise the two types of calculations for the common part of the inventory analysis, namely the direct energy use and GHG emissions.

The assessment of the RESFuel technologies with respect to efficiency, sustainability and economic aspects is performed in an environment of national support policies which should be predictable, stable and avoid frequent or retroactive changes. In this context, they should be cost effective and economically sustainable (REDII proposal).

RESFuel technologies will be investigated and assessed as standalone value chains as well as in the context of integrated bio-refineries, involving potentially synergies with circular economy and bio-economy to ensure the most valuable use of feedstocks.

National legislations and strategies supporting the bio-fuel market will be assessed under consideration of resource efficiency and optimised use of biomass.

2. Terminologies and definitions in the biofuel production value chain

Feedstock supply

WP2 focuses on biomass potential analysis and the assessment of innovative cropping systems. The definitions and terminologies used in WP2 are presented below

Table 3 Main terminologies that will be used in WP2

Terminology	Definition
Theoretical potential	Biomass supply according to biological and physical
	principles = maximum availability of biomass.
Technical potential	Part of the theoretical potential, which can be used
	when technical and ecological restrictions are
	considered.
Economic potential	Part of the technical potential, when economic
	criteria are being used.
Sustainable potential	Part of the technical potential without any negative
	social, ecological and economic costs considering
	the technological and the market development.
Innovative cropping systems	Cropping systems, which have not been widely
	implemented nor studied in detail and thus not
	considered by peer-review publications.
Lignocellulosic material	Material composed of lignin, cellulose and
-	hemicellulose such as biomass sourced from forests,
	woody energy crops and forest-based industries'
	residues and wastes.
Agricultural residues	Residues that are directly generated by agriculture;
	they do not include residues from related industries
	or processing.
Arable land	Land worked (ploughed or tilled) regularly, generally
	under a system of crop rotation. Crop rotation is
	the practice of alternating annual crops grown on a
	specific field in a planned pattern or sequence in
	successive crop years so that crops of the same
	species are not grown without interruption on the
	same field. Normally the crops are changed
	annually, but they can also be multiannual. To
	distinguish arable land from permanent crops or
	permanent grassland, a threshold of five years is
	used. This means that if a plot is used for the same
	crop for five years or more, without in the meantime
	removing the preceding crop and establishing a new
	one, it is not considered arable land.
Biofuel pellet	Biofuel pellet is a densified biofuel made from
	pulverised biomass with or without additives usually
	with a cylindrical form, random length typically 3,15
	mm to 40 mm, and broken ends. The raw material
	for biofuel pellets can be woody biomass,
	herbaceous biomass, fruit biomass, or biomass
	blends and mixtures. They are usually manufactured
	in a die. The total moisture of biofuel pellets is
	usually less than 10 % of mass as received.
Bio-waste	Biodegradable garden and park waste, food and
	kitchen waste from households, restaurants, caterers

	and retail premises and comparable waste from
	food processing plants.
Forestry residues	Residues that are directly generated by forestry;
	they do not include residues from related industries
	or processing.
Marginal land	Land on which cost-effective food and feed
	production is not possible under given site
	conditions and cultivation techniques (Wicke, 2011).
Non-food cellulosic material	Feedstocks mainly composed of cellulose and
	hemicellulose, and having a lower lignin content than
	ligno-cellulosic material; it includes food and feed
	crop residues (such as straw, stover, husks and
	shells), grassy energy crops with a low starch
	content (such as ryegrass, switchgrass, miscanthus,
	giant cane and cover crops before and after main
	crops), industrial residues (including from food and
	feed crops after vegetal oils, sugars, starches and
	protein have been extracted), and material from
	biowaste.
Energy crops	Non-food herbaceous and woody crops that are
	established and managed under an intensive short-
	rotation regime, typically on agricultural land. Crops
	considered are most often fast growing woody
	(willow, poplar) or herbaceous crop types
	(switchgrass, miscanthus).
Short Rotation Coppice (SRC)	Wooded areas managed for growing wooded plants,
	where the rotation period is 20 years or less. The
	rotation period is the time between the first
	sowing/planting of the trees and the harvest of the
	final product, where harvesting does not include
	normal management actions like thinning.
Safeguards for biotic energy	Safeguards for protecting biodiversity, preventing
sources	depletion of ecosystems and any diversion from
	existing uses with negative direct or indirect on
	biodiversity, soil or greenhouse balance (i.e.,
	according to REDII proposal).
Indigenous feedstocks	Feedstocks that contribute to decreasing imports
	from third countries (i.e., preferred according to
	REDII proposal).

A well characterised feedstock for a conversion technology comprises the following information:

- Biomass input common for the technology used
- Traded form of biomass (i.e., as also identified in D 2.1 of S2BIOM (Vis et al,. 2015)
- Maximum moisture content (% wet basis)
- Minimum bulk density (kg/m³, wet basis)

- Maximum ash content (weight %, dry basis)
- Minimal ash melting point (= initial deformation temperature) (°C)
- Maximum allowable content of nitrogen (weight %, dry basis)
- Maximum allowable content of chlorine (weight %, dry basis)
- Maximum allowable content of lignin (g/kg dry matter)
- Minimum allowable content of cellulose (g/kg dry matter)
- Minimum allowable content of hemicellulose (g/kg dry matter)
- Minimum biogas yield (m³ gas / t dry biomass)

A well characterised feedstock for inventory analysis in the context of WtW and sustainability assessment comprises the following information:

- Yield / annual growth rate (t ha⁻¹ y⁻¹)
- · Harvesting cycle and time of first harvest
- Fertiliser (N, P, K) and other inputs (pesticides, etc.) (kg ha⁻¹ y⁻¹)
- Diesel and other energy requirements of cultivation and harvesting (MJ t⁻¹)
- Water use (l ha⁻¹ y⁻¹)
- Composition when harvested (wt%)
 - Moisture content
 - Lignin
 - Hemicellulose
 - Cellulose
 - Chlorine content
 - Ash content
 - Nitrogen content
- For residues: sustainable removal rate (kg ha⁻¹ y⁻¹)
- Effects on water quality
- Biodiversity impact when harvested (qualitative)
- Soil (erosion, nutrients, soil organic carbon) and change when harvested (SOC: t C ha^{-1})

Biomass-to-fuel Conversion technologies

Terminology	Definition
TRL	Technology Readiness Level.
Process complexity	Complexity of operating individual process units and
	complexity of the overall process design.
MFA/EFA	Material and Energy Flow analysis.
Process investment and	Typical CAPEX/OPEX estimations based on process
operating cost	scale, MFA/EFA results and average European prices
	for equipment, material, and energy.
Maximum allowable payback	Upper limit for the typical economic metric of
period	payback period, as also suggested in REDII proposal
	particularly for lignocellulosic biomass.
Synergistic or Added Value	Potential additional benefits for value maximization
Potential	from co-products and/or integration potential.

Table 4 Main terminologies that will be used in WP 3

Fuel specifications	Fuel quality, alkali index, max moisture.
On-site infrastructure	Existing on-site infrastructure (and know-how) that
	can be used (fuel handling, utility networks).
Off-site supporting	Existing off-site supporting infrastructure that can be
infrastructure	used (e.g., harbours for fuel supply).

A conversion technology is defined as well characterised when the following data is available:

- TRL and level of commercial application
- Detailed description of the operating principle
- · Detailed description of the input specifications
- Material efficiencies and closed mass balance (e.g., less than 5% error)
- Energy efficiencies and closed energy balances (e.g., less than 5% error)
- Lifetime of the equipment and investment costs
- Number of typical full load hours per year
- Labour requirements of typical installation (expressed in full-time equivalent (FTE)

Sustainability performance

Terminology	Definition
Sustainable production (UN, 2018)	Production of biomass which responds to demand while minimising the use of natural resources and toxic materials as well as the emissions from waste and
	pollutants over the life cycle of product so as not to jeopardize the needs of future generations.
Sustainability requirement	The overall sustainability condition that a national initiative or a certification scheme requires biomass producers and suppliers to comply with in order to receive sustainability certificates or subsidies. The requirements do not include specific details but indicate a sustainability goal that needs to be achieved. For example, the annual average GHG emissions should meet or be below the target set by a national scheme (with no exact thresholds mentioned).
Sustainability criteria	A sustainability condition which is more specific compared to the term sustainability requirement. The criteria indicate a clear obligation for solid biomass suppliers and generators to comply with a sustainability requirement. For example, for biomass used to generate electricity in 2015, the relevant GHG emission threshold is 79.2 g CO_2eq/MJ electricity.
National verification body	An appointed national organisation which assesses the established sustainability proofs submitted by biofuel suppliers/third part verifiers.

Table 5 Main terminologies that will be used in WP 4

Certification scheme (EC, 2018)	Voluntary schemes for verification of compliance with EU sustainability criteria/requirements and other relevant biomass certification systems. Each scheme may have different focuses, e.g. one scheme certifies greenhouse gas footprints, another verifies some or complete set of environmental and social criteria.
Third party verification	An independent body that verifies data delivered by biomass producers and suppliers in order to assure that biomass use complies with established sustainability requirements.
Greenhouse gas footprint	An approach to measure greenhouse gas emitted along the supply chains of biomass.
Sustainable supply chain	A supply chain in which sustainability performance (environmental, social and/or economic indicators) is implemented in each process of the chain.
Socio-economic performance (SPTF, 2018; Srebotnjak, 2018)	Social-economic performance is defined as the effective implementation of accepted social values and economic benefits along the supply chains.
Environmental performance (Srebotnjak, 2018)	Assessment of the track record of biomass producers and suppliers against specified objectives of environmental quality and resource use efficiency.
Harmonisation	A process of creating common standards established in national initiatives and certification schemes.
Alignment	An arrangement/ agreement between national policy makers and related stakeholders on a number of similar sustainability criteria and/ or requirements which have various sustainability compliance levels.
Life cycle assessment (EPA, 2018)	A life-cycle assessment (LCA) is a tool that can be used to evaluate the potential environmental impacts of a product, material, process, or activity. An LCA is a comprehensive method for assessing a range of environmental impacts across the full life cycle of a product system, from materials acquisition to manufacturing, use, and final disposition.
Indirect land use change (iLUC) (JNCC Report, 2011, Valin et al., 2015)	Occur when existing cropland is used for biofuel feedstock production, forcing food, feed and materials to be produced on new cropland elsewhere. Because iLUC occurs through global market mechanisms with many direct and indirect effects, it can only be modelled, not measured.

End use in engine/ vehicle technologies

Table 6 Main terminologies that will be used in WP 5

Terminology

Definition

	
BMEP	Break' mean effective pressure [MPa or kPa] – is a
	measure of an engine's capacity to do the work. BMEP
	represents the average pressure acting on a piston from
	the top to the bottom of each power stroke, which
	produce brake power output. Break mean effective
	pressure is the universal load indicator of combustion
	engines. This is the way to make the load of the
	engines of difference sizes comparable with each other
BSEC	Brake Specific Fuel Consumption (σ/kWh) is the fuel way
	of expressing the fuel consumption irrespective of the
	anging size RSEC is reversely propertional to RTE and
BIE	Brake Thermal Efficiency – represents overall
	performance of an engine. BIE is mechanical power
	output of the engine divided by the fuel energy input
	(lower heating value (LHV) *fuel mass flow). Brake
	thermal efficiency varies largely depending on engine
	type, engine load or BMEP, engine speed or mean
	piston speed, used fuel and engine combustion system.
C _m	Mean piston speed [m/s] – the average speed of the
	piston in an internal combustion engine, engine speed
	parameter irrespective of the engine size. It is a
	standard measure for comparing the drives of various
	engines
CL engine	Compression Ignition engine diesel engine
EAME diesel (Biodiesel)	Renewable diesel produced from Fatty Acid Methyl
	Esters
HVO diesel	Renewable diesel produced from Hydrotreated Vegetable
	Oils and animal fats
Fischer-Tropsch synthetic	Liquid hydrocarbons (from a mixture of carbon
diesel	monoxide and hydrogen) produced by a process of
	chemical reactions.
Paraffinic diesel	Paraffinic high cetane number diesel fuel produced from
	synthesis or hydrotreatment process
SPK	Synthesized Paraffinic Kerosene – synthetic fuel
	composed mainly of isoparaffins normal paraffins and
	composed many or soparamits, normal paramits and
Piomothanal	Cycloparallins. Mothanal produced from biomace foodstack
	Neuranoi produced from Diomass feedstock.
	Duranor produced from Diomass feedstock.
BIO-DME	Dimethyl ether produced from biomass feedstock.
Bio-ethanol	Ethanol produced from biomass feedstock.
Bio-hydrogen	Hydrogen produced from biomass feedstock.
NEDC	New European Driving Cycle - introduced in 1990 and
	was intended to reflect typical usage of a car in Europe
	from the perspective of emissions and fuel economy.
WLTP	Worldwide harmonized Light vehicles Test Procedure -

 $^{^{3}}$ The word "brake" is related to extraction, by use of for example dynamometer (electrical brake) to measure the engine parameters.

		introduced in 2015, is a global harmonized standard			
		that determinates the emissions and fuel consumption			
		from light-duty vehicles. In comparison to NEDC, WLTP			
		represents better real driving by testing on longer cycle			
		distances, higher average speeds, testing influence of			
		optional equipment of the car, longer cycle time, 4			
		more dynamic phases and different gear shift points for			
		each vehicle.			
European emiss	sion	Presents the acceptable top limits for exhaust emissions			
standards		of new vehicles sold in EU and EEA countries. European			
		emission standards are applied to passenger cars, light			
		commercial vehicles trucks and buses large goods			
		vehicles and non-road mobile machinery.			
	Euro 7	Estimated introduction year - 2020 - 2021			
	Euro 6	Introduced in September 2014			
	Euro 5b	Introduced in September 2011			
	Euro 5a	Introduced in September 2009			
		Introduced in Japuary 2005			
	Luio 4	The FOO is the European standard for automative discal			
EN 390		fuel			
ENI 220		EN 229 is the European standard for automative			
LIN 220		EN 228 is the European standard for automotive			
ENL 14214		Sasounie luei			
EN 14214		EN 14214 IS the European Standard for FAME -			
		(06.5%) EAME fuel			
EN 45040		(90,5%) FAME Tuel			
EN 15940		European standard for paraffinic diesel fuel from			
CEN/TS 15202		Synthesis of Hydrotreatment.			
CEN/15 15295		Standard proposal for high ethanol concentration (E85)			
FF		automotive fuels for spark ignition engines.			
E5		Gasoline fuel blended with 5% of ethanol (volume			
F10		Dased) EN 228			
EIO		Gasoline fuel blended with 10% of ethanol (volume			
505		Dased) EN 228			
E85		Gasoline fuel blended with 85% of ethanol (volume			
		Dased). Usable only in flexible fuel vehicles (FFV).			
В7		Diesel fuel blended 7% of FAME-biodiesel (volume			
FDOF		based) EN 590			
ED95		Ethanol based diesel fuel blended with ignition			
		improvers. 95% Ethanol. Can be used in dedicated			
		vehicles/engines.			
H7		Diesel tuel blended with /% of HVO			
M5		Gasoline fuel blended with 5% of methanol (volume			
		based)			
Bi-fuel		Bi-fuel engine (or vehicle) is a SI engine able to run			
		with gasoline or liquid petroleum gas (LPG) or methane.			
Dual fuel		Dual fuel (DF) engine (or vehicle) is a CI engine able to			
		run with diesel + methane.			

ICE	Internal Combustion Engine
SI engine	Spark Ignition engine, gasoline engine
Specific emissions	Depending on engine type given in g/kWh or g/km for
	hydrocarbon, carbon monoxide, nitrogen oxides,
	particulate matter and carbon dioxide
Drop in fuel	Fuel than can be used as such or as a blend in normal
	Cl or Sl engines
Dedicated Vehicle	Vehicle that has been adapted to high concentration alternative fuels
Flexible Fuel Vehicle (FFV)	Flexible Fuel Vehicle (car that is able to use gasoline or gasoline ethanol blends up to E85)
Blending walls	Technical limitations for component concentrations, (e.g., according to EU Fuel Quality Directive 2009/30/EC, maximum 10% (vol.) of ethanol in gasoline (E10), maximum 7% (vol.) of FAME biodiesel in diesel fuel (B7))
Current technologies	 Existing commercial technologies in road and marine traffic: light duty vehicles with SI engine, using gasoline light duty vehicles with CI engine, using diesel fuel light duty Flexible Fuel Vehicles (FFV) with SI engine, using gasoline ethanol blends up to E85 light duty Bi-fuel vehicles with SI engine and separate fuel systems for both gas (CNG, LPG or biogas) and gasoline heavy duty vehicles with CI engines, using diesel fuel marine vessels with CI engine, using marine diesel oil or heavy fuel oil marine vessels with dual fuel engines using LNG and diesel marine vessels with lean burn SI engines using LNG
Future technologies	Future engine technologies of 2020 are considered to cover those where prototypes have already been demonstrated, although not in commercial use yet. These technologies are included in the modelling, provided that there are proper performance data available. Technologies of 2030s are still on the research stage in 2018 and excluded from the modelling work. 2020s: - dedicated SI engines tuned for E100 or M100 - dedicated CI engines tuned to utilize paraffinic high cetane number fuels (BTL, GTL, HVO) - heavy duty DME engine using neat DME - heavy duty ED95 engine, close to CI engine (ED95 fuel includes ignition improvers)

 marine methanol M100 CI engine using a high reactivity fuel (diesel) pilot dual fuel engines for heavy duty using either gas (CNG, LPG or biogas) or alcohol as low reactivity fuel and diesel or DME or other high reactivity fuel
 2030s: light duty vehicles with dual fuel engines using either gas (CNG, LPG or biogas) or alcohol or other low reactivity fuel and diesel or DME or other high reactivity fuel light duty and heavy duty vehicles with methanol M100 Cl engines with high reactivity fuel pilot ignition light duty and heavy duty vehicles with Reactivity Controlled Compression Ignition (RCCI) engines using two fuels: high reactivity fuel and low reactivity fuel, several fuel options may be valid light duty and heavy duty vehicles with Spark Assisted Compression Ignition (SACI) engine using gasoline or other low reactivity fuel
2040s: - Vehicles with fully flexible high efficiency engines using advanced fuels

Conclusions

This document presents the common analytical framework of the **ADVANCEFUEL** project. The framework first introduces the main focus in regard to the feedstock categories and the RESFuel conversion technologies that will be analysed. The considered biomass-based feedstock concentrates on lignocellulosic resources derived from biogenic waste, agriculture and forestry. The project's focus further extends to other liquid renewable fuels that do not have biomass as feedstock basis (but for instance renewable hydrogen and CO_2). RESFuel conversion technologies comprise the demonstration and (near-) commercial scale technologies. Only fuels that are in liquid form are included in this project. Next to advanced biofuels, renewable power-to-liquid technologies are within the scope of this project.

In a second step, the working principals of the project are presented. These are identification of the main barriers to RESFuels, assessment of the possible solutions, identification of scenarios and the impact analyses of different solutions in an integrated manner.

Furthermore, the working process and the interlinkage of the different WPs has been examined closely in order to point out which project output is needed for the further progress of other tasks. A good harmonisation of the respective timelines in each WP at an early stage will increase the successful implementation of the projec's outline. Detailed input-output tables show the general working structure and highlight critical phases, which demand special attention and close cooperation of the concerned project partners (including potential adaptations of timelines).

Finally, the main definitions that will be used in each WP are introduced. These definitions aim at a common understanding and use of the terminology across the project WPs.

References

A Alamia, I Magnusson, F Johnsson, H Thunman, (2016) "Well-to-wheel analysis of bio-methane via gasification, in heavy duty engines within the transport sector of the European Union", Applied Energy 170, 445-454

COM(2016) 767 final/2. Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL on the promotion of the use of energy from renewable sources (recast)

Directives 2009/28/EC, OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 April 2009 on the promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC

Directive 2009/30/EC. Amending Directive 98/70/EC as regards the specification of petrol, diesel and gas-oil and introducing a mechanism to monitor and reduce greenhouse gas emissions and amending Council Directive 1999/32/EC as regards the specification of fuel used by inland waterway vessels and repealing Directive 93/12/EEC

EC, 2018. Last excessed in Fabruary 2018. See https://ec.europa.eu/energy/en/topics/renewable-energy/biofuels/voluntary-schemes SPTF, 2018. Last excessed in February 2018. See https://sptf.info/hp-what-is-sp

Edwards, R.; Larive, J_F.; Rickeard, D.; Weindorf, W.2014. Well-to-wheels analysis of future automotive fuels and powertrains in the European context. JRC technical reports. Well-to-tank report Version 4.a

EPA, 2018. Last excessed in February 2018. See <u>https://www.epa.gov/saferchoice/design-environment-life-cycle-assessments</u>

FP7 S2BIOM project (http://www.s2biom.eu/en/about-s2biom.html

JNCC, 2011. Report 456 of Joint Nature Conservation Committee. Indirect Land Use Change from biofuel production: implications for biodiversity, https://www.cbd.int/agriculture/2011-121/UNEP-WCMC-JNCC%20report-sep11-en.pdf.

Srebotnjak, T. 2018. Towards new measures of environmental performance-The Environmental Quality Index The Environmental Quality Index. Last excessed in February 2018. See http://www.oecd.org/sti/ind/29561498.pdf

Valin, H.; Peters, D.; van den Berg, M.; Frank, S.; Havlik, P.; Forsell, N.; Hamelinck, C. The land use change impact of biofuels consumed in the EU. 2015. (https://ec.europa.eu/energy/sites/ener/files/documents/Final%20Report_GLOBIOM_pu blication.pdf) Vis, M.; te Raa, R.; den Berg, D.; Knoef, H.; Alakangas, E.; Karki, J.; Uslu, A; Harmens, P.; Elbersen, W. A method for standardized biomass characterization and minimal biomass quality requirements for each S2Biom Project Grant Agreement n°608622 biomass conversion technology .2015. D2.1 of S2BIOM, http://www.s2biom.eu/images/Publications/D2.1_S2Biom_Methodology_for_Biomass_cha racterization_and_quality_Annexes_FINAL.pdf)

UN, 2018. Last visited Febryuary 2018. See

https://sustainabledevelopment.un.org/topics/sustainableconsumptionandproduction

Wicke, 2018, https://dspace.library.uu.nl/handle/1874/203772

Annexes

Input-Output schemes per WP

In this section first the input requirements are briefly presented per WP. Next the outputs for other WPs are given. The input requirements are then clarified in more detail to get a common understanding.

WP 1 Monitoring framework and performance indicators for market uptake of RESFuels

WP1 focuses on the barriers to market uptake of RES fuels, the monitoring framework and the key performance indicators. It establishes the basis for a more detailed analysis in the following WPs. Therefore, this WP has strong interlinkages with all of the following WPs.

Table 7 presents briefly what inputs from other WPs are needed for WP1 and Table 8 introduces the main outputs of this WP (as inputs to other WPs).

From	Output ID	Month	Inputs to WP1	Method
WP7	07.1	6	1. Stakeholder engagement in	Workshop
			identifying key barriers	
WP8	08.1	4	2. The stakeholder mapping and Communication Plan	Table with contact details
WP2-7	O2.1, 3.1, 4.1, 5.2, 6.1	6	3. Feedback on KPI's	A draft framework
WP2-7	02.1, 3.2, 4.2, 06.1	17,18	4. Relevant results for KPI quantification	A template will be provided

Table 7 Presentation of all relevant input to WP1

Table 8 Presentation of output from WP1 to other WPs

Outputs from WP1	То	Output ID	Related to task	Month
1. Barriers background document	WP2- WP7	01.1	1.1.3	4/5
2. Monitoring framework and selection of KPI's	WP2-7	01.2	1.2.1	6
3. A common framework with definitions	WP2-6	01.3	1.3	6

0

4. A stakeholder workshop: content related	WP7	01.4	All	5
support of workshop organisation				

WP2 Upgraded lignocellulosic feedstock supply chains for advanced liquid biofuels

WP2 identifies and analyses the potential for upgrading feedstock production and supply, as well as devises pathways for improving the feedstock supply chain for advanced liquid biofuels. This WP has strong linkages with WP3, WP4 and WP6.

Table 9 presents briefly what inputs from other WPs are needed for WP2 and Table 10 introduces the main outputs of this WP (as input to other WPs).

From	Output ID	Month needed	Inputs to WP2	Method
WP1	01.2	6	I. KPIs related to feedstocks supp	oly Report
WP3	03.2	9	 Parameters for technology-spec feedstock requirements in term physical and chemical propertie 	ific Criteria, s of parameters es
WP4,5	04.3 05.6	7	 Requirements from standards a certification schemes 	nd Criteria, parameters
WP8	08.1	4	 The stakeholder mapping and Communication Plan 	Table with contact details

Table 9 Presentation of all relevant input to WP2

Table 10 Presentation of outputs from WP2 to other WPs

	Outputs from WP2	То	Output ID	Related to Task	Month
1.	Relevant results for KPI quantification	WP1	02.1		18,30
2.	Analysis of innovative crop rotation schemes		02.2	2.2.2	20
3.	Domestic feedstock availability (cost-supply curves)	WP3, 4,6,7	02.3	2.1.1	5
4.	Import scenarios including cost- supply of biomass/biofuel import potential		02.4	2.1.2	9
5.	Feedstock (including intermediates) – Advance Fuel Technology matrix (suitability)	WP6	O2.5		13
6.	Physical properties of feedstocks and intermediates	WP6	02.6		13

WP3 Efficient roll-out of conversion technologies and system integration

WP3 identifies and analyses barriers for large scale ramp-up and deployment of RESFuels with respect to technical innovations, production processes and system integration.

Table 11 presents briefly what inputs from other WPs are needed for WP3 and Table 12 introduces the main outputs of this WP (as input to other WPs).

From	Output ID	Month needed	Inputs to WP3	Method
WP1	01.1	6	1. Key barriers to biofuels	Report
WP2	O2.3		2. Biomass sustainable supply potential, including quality (e.g. Alkali index)	Technology assessment
WP8	O8.1	4	3. The stakeholder mapping and communication plan	Table with contact details

Table 11 Presentation of all relevant input to WP3

Table 12 Presentation of output of WP3 to other WPs

	Outputs from WP3	То	Output ID	Related to task	Month
1.	Relevant results for KPI quantification		03.1		18,30
2.	Requirements on biomass quality for the different processes	WP2,6	03.2	3.1	10
3.	Advanced biofuel conversion system characteristics over time (efficiency, CAPEX, OPEX etc.)	WP4,6	03.3	3.1	13
4.	Needs for development and innovations. Estimation of potential increase in TRL level can be achieved and the probability for this to happen within a 5-10 year period	WP5,6	03.4	3.2	24
5.	Financial risk and instruments for financing demonstration and piloting	WP6	03.5	3.2	24
6.	Options for greening of the fossil fuel infrastructure	WP6	03.6	3.3	18
7.	Possible timelines for implementation of biomass conversion technologies and associated requirements on R&D, financial support and policies – short, medium and long term.	WP5,6	03.7	3.4	20,32

8.	The stakeholder workshop: content	WP7	03.8	All	16
	related support of workshop				
	organisation				

WP4 Towards sustainable biomass production, harmonised sustainability standards and certification

The objective of WP4 is to assess current and future sustainable production of RESFuels and test its performance in view of sustainability criteria and certification schemes and standards to safeguard and stimulate sustainable production.

Table 13 presents briefly what inputs from other WPs are needed for WP4 and Table 14 introduces the main outputs of this WP (as input to other WPs).

	Table	13	Presentation	of all	relevant	input	to	WP4
--	-------	----	--------------	--------	----------	-------	----	-----

From	Output ID	Month needed	Inputs to WP4	Method
WP7	07.3	22	 Stakeholder validation to proposed options for harmonization of sustainability criteria across sectors and for the entire EU 	Workshop
WP2.1	02.3	13	2. Advanced biofuel feedstock types and their potential per region/location over time	Input modelling (GIS)
WP2.2	02.9	13	4. Performance of SRC (yield, fertilizer use, environmental impacts)	
WP2.2	02.2	13	5. Type of innovative crop schemes (feedstock type, management, location)	Report (review/ analysis)
WP2.3	02.3	13	 Feedstock supply chains (locations of supply/demand, transport logistics) 	Input to GHG-LCA, S-LCA (Excel)
WP3.1	03.3	13	 Advanced biofuel conversion system characteristics over time (efficiency, CAPEX, OPEX etc) 	Report
WP8	08.1	4	8. The stakeholder mapping and communication Plan	Table with contact details

Outroute from WDA		Τ.			Manath
Outputs from WP4		10	Output ID	Related to	ΜΟΠΤΠ
				task	
1. Relevant results for KPI		WP1	O4.1	-	18,30
guantification					
2. Feedstock and location spe	cific	WP6	04.2	4.3	30
environmental impacts (data	base,				
report)					
3. Relevant sustainability indica	ators	WP1.3	O4.3	4.4	12
of innovative crop schemes					
4. Environmental and socio-		WP1.2, 6	O4.4	4.4.2	24
economic performance of		WP6			
advanced fuel production					
systems					
5. Life cycle GHG performance	per	WP5,WP6	O4.5	4.4.3	34
supply chain (feedstock +					
conversion combination)					
6. The stakeholder workshop:		WP7	O4.6	All	21
content related contribution	to				
workshop organisation					

Table 14 Presentation of output from WP4 to other WPs

WP5 Improved evidence for market uptake

The core objective of WP5 is to improve evidence regarding the future market uptake, which is available to policy and industry. It analyses the role that RESFuels will play in the aviation, marine and road transport sectors for 2020 and towards 2030 in terms of market size; future demand and market growth rates; current policy landscape and gaps, best practices as well as fuel blending issues that are related to end use.

Table 15 presents briefly what inputs from other WPs are needed for WP5 and Table 16 introduces the main outputs of this WP (as input to other WPs).

From	Output ID	Month needed	Inputs to WP5	Method
WP2-4	02.2, 03.4, 04.5	7	 Identification of innovations addressed across the value chains in Work Packages 2, 3 and 4 and to which extent they have any best practices in terms of market uptake and policy interventions at EU and international level; e.g. which best practices promote the uptake of lignocellulosic crops and other innovative crop schemes (Task 2.2). 	Questionnaire

Table 15 Presentation of all relevant input to WP5

WP2-4	O3.6	7	2. Identification of current policy	
			mechanisms & gaps	
WP8	O8.1	4	3. The stakeholder mapping and	Table with
			Communication Plan	contact
				details

Table 16 Presentation of output from WP5 to other WPs

Outputs from WP5	То	Output ID	Related to task	Month
 Brief description of Best Practice (in a set format) 	WP6	O5.1	5.2	18,36
2. Quantification of KPIs	WP1.2	05.2	5.2	18, 30
3. Brief description of policy mechanism (typology, duration, main aim, part of the value chain)	WP6	05.3	5.3	18
 List of relevant gaps in current policy formation 	WP6	05.4	5.3	30
 Technical limitations at end use: RESFuels possible per engine type, blending limitations, extra costs wrt reference fossil comparator[€/GJ or €/l] 	WP6.1,6. 2	O5.5	5.4	
6. Numerical tools for fuel and fuel blend properties	WP6.5	O5.6	5.4	33
7. The stakeholder workshop: content related contribution to workshop organisation	WP7	05.7	All	26
8. Market volumes	WP6	5.8	5.1	18

WP6 Integrated assessment of innovative approaches for RESFuels

This WP aims to provide useful scenarios and sensitivity analysis of the future role of RESFuels, exploring the full width of possible future exploitations. This WP brings together all the relevant outputs from the previous WPs and conducts an integrated analysis. As such, it depends strongly on the timely delivery of the other WPs' outputs.

Table 17 presents briefly what inputs from other WPs are needed for WP6 and Table 18 introduces the main outputs of this WP (as in out to other WPs).

From	Output ID	Month needed	Inputs to WP6	Method
WP2	02.3	14	 Lignocellulosic feedstock availability in the form of cost supply data <u>Units:</u> 	Tables or a report

Table 17 Presentation of all relevant input to WP6

			 Availability [PJ] or [kt as received] Cost/price [€/GJ] or [€/t as received] Cost of logistics to next step in the chain need to be separated. Geographical resolution: Member States lower resolution also possible. 	
WP2	O2.4	14	 Import scenarios: biomass potential (raw, intermediate or final product) per source regions (for continent or country) and associated costs. See description of O2.3 in this table. 	Tables or a report
WP2	O2.5	13	 3. Feedstock (including intermediates) – RESFuel Technology matrix (suitability) A matrix that shows the allowed combinations of feedstock (incl. intermediates like wood chips) that can be applied for each advanced RES fuel technology. This is to make sure that all feedstocks are included and also to make sure that feedstocks are excluded that are not suitable (technically or from a sustainability perspective) 	A matrix
WP2	O2.6	13	 4. Physical properties of feedstock and intermediates: The following physical properties are needed: -LHV [GJ/t as received] -moisture content [%, mass based] -bulk density [t/m³] These properties are relevant for two reasons: -for transport of those properties -to make sure the same values are used in the consortium (harmonization 	Table
WP3	03.3	14	 5. Techno-economic data of conversion technologies: Technologies that are to be included according to O3.3, should be accompanied with techno-economic parameters so that they are included in the scenario modelling. CAPEX [€/unit of output] OPEX [€/(unit of output * year)] Ratio's input/outputs (conversion efficiencies) life time [yr] Economic costs/benefits of inputs/outputs outside of the biobased market segments [€/unit] Values should be given either for 2020, 2030, 2040 or for the first commercial plant complemented with learning rates. 	Tables or a report
WP3	03.5	13	 6. Identification of technologies and feedstocks to include based on TRL, costs and other A list of all technologies (including feedstocks) that are likely to play a role in the transport sector within the timeframe 2040/2050. 	Tables or a report

WP3	03.3	13	7. Physical properties of new RESFuels: The	Table
			following physical properties of feedstocks and	
			intermediates are needed:	
			• LHV [GJ/t]	
			• bulk density [t/m ³]	
WP3	03.4-	14	8. Possibly more biorefinery routes (see techno-	Tables or a
	03.5		economic data of conversion technologies): The	report
			introduction year of the first commercial plant is	
			important because it will have an important	
			impact on the results for import years like 2030.	
WP3	03.6	14	9. Greening of fossil fuel infrastructure: Overview of	Report
			most important locations and their RESFuel	
			outputs with volumes.	
			Overview of most important locations and their	
			RESFuel outputs with volumes. Initially to get an	
			understanding if exiting fossil infrastructure and	
			refineries should be included in the scenario	
			modelling	
WP3	03.7	14	10. Biomass-process implementation time line:	Tables or a
			introduction year of the first commercial plant	report
1415.4	0.45	47		
WP4	04.5	1/	11. GHG factors: Avoided GHG emissions per	Tables
		10	feedstock, technology combi	
WP5	05.8	13	12. Market Volumes: total fossil + RESFuel demand	Report
			per modality per country. Modalities: cars+	
			Also split for type of fuel consumed (i.e. for cars	
			diesel/gasoline ratio)	
WP5	05.1	20	13. Best practices (input for T6.4)	Report
		-		
WP5	05.3	10	14. Policy instruments: quantitative	Tables or a
			information/assumptions is important	report
WP5	05.5	8	15. Technical limitations end use: RESFuels possible	Tables or a
			per engine type, blending limitations, additional	report
			cost in comparison to the reference $[\notin/GJ]$ or	
			€/l]	
WP8	08.1	4	16. The stakeholder mapping and communication	Table with
			plan	contact
				details

Table 18 Presentation of output from WP6 to other WPs

	Outputs from WP6	То	Output ID	Related to task	Month
1.	KPI's - Cost reduction figures - Contribution of different types of RESFuels in 2030 and 2040	WP1	O6.1	6.2	18,30

2.	Development pathways for RESFuels	WP4	06.2	6.2	26
	Input biomass [PJ] per conversion technology				
3.	Market segmentation, end uses and policy	WP7	06.3	6.4	30
	recommendations				

WP7 Stakeholder engagement with market players

This WP is designed to increase the stakeholder involvement. The main objectives are to receive required feedback on strategies to reduce/remove barriers in the RESFuel market, validation of results regarding to plausibility and usefulness of project outcomes and implementation of the project results, achieving their acceptance and maximizing the capacity building among the stakeholders.

Table 19 presents briefly what inputs from other WPs are needed for WP7 and Table 20 introduces the main outputs of this WP (as in out to other WPs).

From	Outp	Month	Inputs to WP7		Method
	ut ID	needed			
WP1	01.4	6	1.	The stakeholder workshop: content related	Workshop
				contribution to workshop organisation	
WP2	02.1	12	2.	The stakeholder workshop: content related	Workshop
	1			contribution to workshop organisation	
WP3	03.8	17	3.	The stakeholder workshop: content related	workshop
				contribution to workshop organisation	
WP4	04.6	22	4.	The stakeholder workshop: content related	workshop
				contribution to workshop organisation	
WP5 &	05,7,	27	5.	The stakeholder workshop: content related	workshop
6	06.3			contribution to workshop organisation	
WP8	08.1	4	6.	The stakeholder mapping and Communication	Table with
				Plan	contact
					details
					actuno

Table 19 Presentation of all relevant input to WP7

Table 20 Presentation of output from WP7 to other WPs

	Outputs from WP7	То	Output ID	Related to task	Month
1. w re a k	Organisation of a key stakeholder vorkshop (M6) for an early ecording of stakeholder requests nd for mutual discussions about ey barriers	WP1	07.1	1.1	6
2. C a	Organising a workshop on biomass vailability	WP2	07.2	2.1	12
3. C fi	Organising a workshop on RES uel conversion technology	WP3	07.3	3.1	17

solutions				
4. Organising a workshop on RESFuel sustainability	WP4	07.4	4.1	22
5. Organise a workshop on RESFuel market roll out	WP5, WP6	07.5	5.1, 6.4	27

