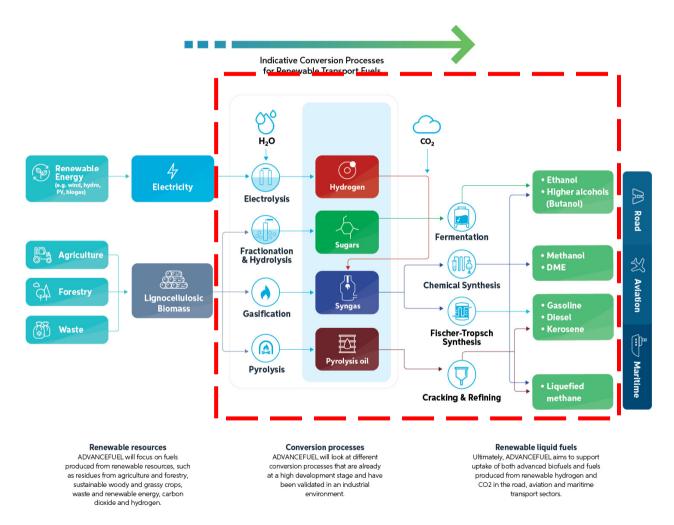
Market barriers, feedstock availability & suitability for advanced biofuels



Suitability of Lignocellulosic Feedstock and Intermediates for Advanced Biofuel Conversion Processes

Stavros Papadokonstantakis Chalmers University of Technology ADVANCEFUEL Stakeholder Workshop Gothenburg, 20 September 2018

Scope of Conversion Technologies

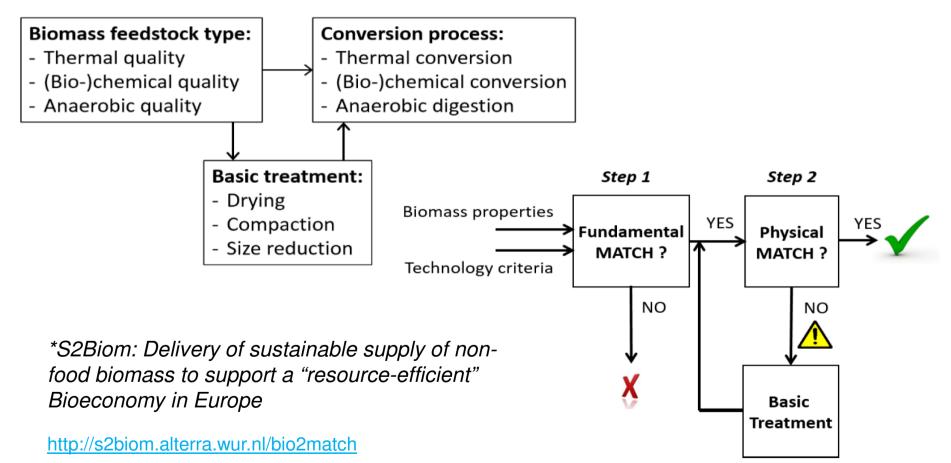
Conversion Technologies Barriers

- Multiple sources

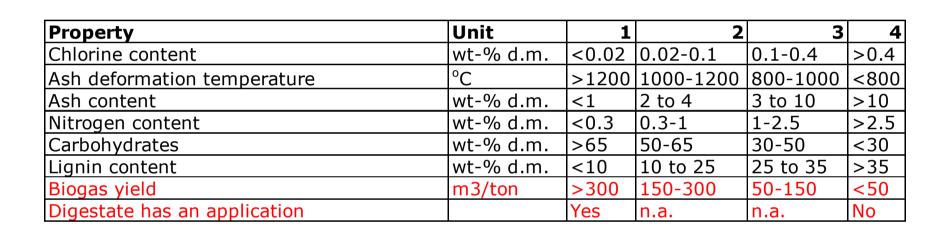
- Conversion efficiency
- Consumption of chemicals, water, energy
- Technical feasibility
- Biorefinery concepts and (sectoral) integration to infrastructure
- CAPEX, financing in R&D, piloting, etc.
- Long-term supportive policies

Generic Parameters of Conversion Technologies

- TRL and level of commercial application
- Detailed description of the operating principle
- Detailed description of the input specifications
- Material efficiencies and closed mass balance (e.g., less than 5% error)
- Energy efficiencies and requirements on when energy balances can be considered (e.g., less than 5% error in balance)
- Operating costs
- Lifetime of the equipment and investment costs
- Number of typical full load hours per year
- Labour requirements of typical installation (expressed in full-time equivalent (FTE))


"Well characterized" feedstock for a conversion technology

- Maximum moisture content (% wet basis)
- Minimum bulk density (kg/m³, wet basis)
- Maximum ash content (weight %, dry basis)
- Minimum ash melting point (= initial deformation temperature) (°C)
- Maximum allowable content of nitrogen (weight %, dry basis)
- Maximum allowable content of chlorine (weight %, dry basis)
- Maximum allowable content of lignin (g/kg dry matter)
- Minimum allowable content of cellulose (g/kg dry matter)
- Minimum allowable content of hemicellulose (g/kg dry matter)
- Minimum biogas yield (m³ gas / ton dry biomass)


Matching Feedstock to ConversionADVANGTechnology (Bio2Match Tool, S2Biom project*)

Indicators for Fundamental Match

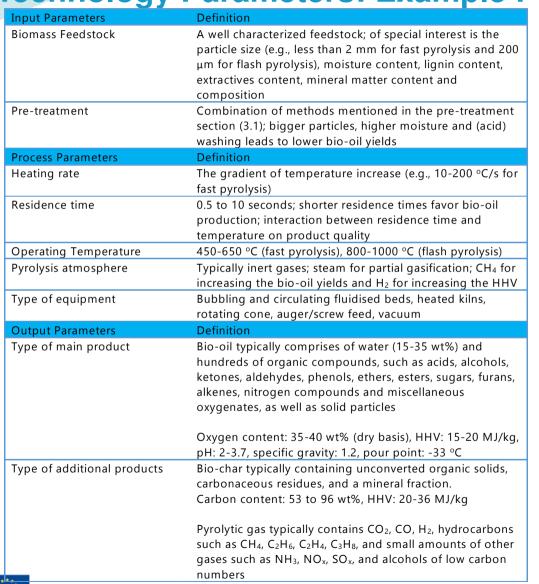
ADVANCEFUEL

Example for Pimary Forest Residues

		Logging residues from final fellings (tops and branches mainly)		Logging residues from thinnings (tops and branches mainly)		Stumps from final fellings	
		Logging residues from final fellings originating from broadleaf trees	Logging residues from final fellings originating from conifer trees	Logging residues from thinnings originating from broadleaf trees	Logging residues from thinnings originating from conifer trees	Stumps from final fellings originating from broadleaf trees	Stumps from final fellings originating from conifer trees
Chlorine content	wt-% d.m.	0.01	0.01	0.01	0.01	0.01	0.01
Ash deformation temperature	°C	1175	1175	1175	1175	1175	1175
Ash content	wt-% d.m.	4.00	4.00	4.00	4.00	6.00	6.00
Nitrogen content	wt-% d.m.	0.4	0.4	0.4	0.4	0.3	0.1
Carbohydrates	wt-% d.m.	72.8	67.9	72.8	67.9	72.8	67.9
Lignin content	wt-% d.m.	23.4	28.6	23.4	28.6	23.4	28.6
Thermal conversion classif	ication						
Ash content		3	3	3		3 🥥 🗧	3
Ash melting temperature		2	2	2		2 🥥 💈 💈	2 🔘
Nitrogen content		2	2	2		2 🧿 👘 💈	2
Chlorine content		1	1	1		1 🔵 1	
Biochemical conversion cla	assification						
Lignin content		2	3	2		3 🥥 💈 💈	2 🔵
Ash content		3	3	3	$\mathbf{\vee}$		3 🔴
Carbohydrate content		1	1	1		1 🔵 🕺	

Technology Parameters: Example Gasification

57	· · · · · · · · · · · · · · · · · · ·
Input Parameters	Definition
Biomass Feedstock	A well characterized feedstock; of special interest is the moisture content), ash content, ash melting point, chlorine content, lower heating value and bulk density
Pre-treatment	Grinding and thermal pre-treatment methods including drying, torrefaction, flash pyrolysis and treatment with organic liquids are some typical examples
Process Parameters	Definition
Gasification agent	Steam (Indirect gasification), Oxygen (Direct gasification)
Operating Temperature	800-1500 °C
Operating Pressure	1-30 bar
Main Equipment	Entrained flow, fluidized beds (circulating or bubbling in a dual-bed setup)
Auxiliary Equipment	Heat exchangers, Gas cleaning filters, Scrubber/Absorption columns
Gasification agent to fuel ratio	Important for controlling the catalytic activity in DFB systems and the λ ratio
Solid circulation	Primary circulation of bed material and secondary circulation of ash fractions
Supplementation of inorganics	Inorganic compounds containing potassium, Sulphur and calcium for improving the activity of the catalytic bed
Catalytic Bed	The type of catalyst used in the fluidized bed (e.g., nickel based catalyst)
Output Parameters	Definition
Type of main product	Syngas (Mixture of primarily CO and H ₂ , that can also contain amounts or traces of CO ₂ , H ₂ O, CH ₄ , alkenes, alkynes, inert gases; the composition can vary depending or raw gas treatment)
Type of additional products	Mainly aromatics (e.g., benzene) but also heavier tar components, either single (e.g., naphthalene) or in the form of mixtures, can be recovered and used in various market applications
* *	


Indicative operating threshold for moisture: 35% for fluidized bed combustors, 20-30% for gasification reactors for ash content: more than 5% is

unacceptable and alkali index above 0.34 kg/GJ will cause fouling

(Tanger et al., 2013)

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N.º 764799.

Technology Parameters: Example Pyrolysis

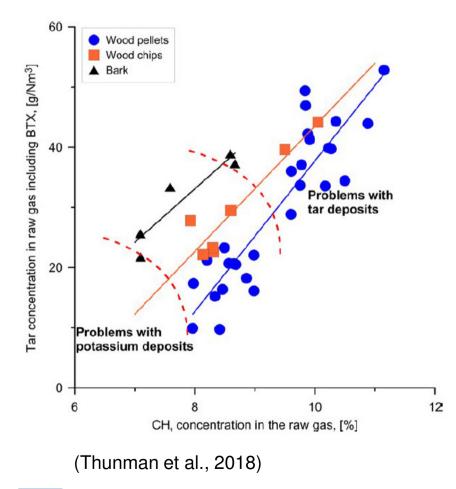
Indicative operating threshold for moisture 10% (Tanger et al., 2013)

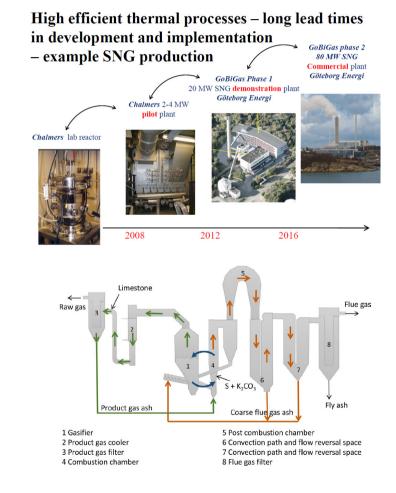
Similar Tables for:

- Pretreatment Technologies (physical, chemical, biological)
- Biochemical Technologies (SHF, SSF, dSSF, CBP)
- + Information on Downstream chemical synthesis and refining

See Deliverable 3.1 for more Information

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement N.º 764799.


Example: Pretreatment Matching (Level-1) ADVANCEFUEL


Pre-treatment Technology	Thermochemical Conversion	Biochemical Conversion
Chipping, grinding, milling	\checkmark	\checkmark
Pelletisation	\checkmark	
Torrefaction	\checkmark	
Acid hydrolysis		\checkmark
Organosolv		\checkmark
Alkaline		\checkmark
Steam explosion	\checkmark	\checkmark
Liquid hot water		\checkmark
AFEX		\checkmark
Biological		\checkmark

Beyond Simple Matching: Example of Feedstock Impact on Indirect Gasification

- Well-to-wheel system efficiency increase (2020, 2030, 2040)
- CAPEX requirements for TRL increase
- CAPEX and OPEX reduction by integrating into infrastructures

Thank you for your attention

Stavros Papadokonstantakis Chalmers University of Technology stapap@chalmers.se